
COSMGrid: Configurable, Off-the-shelf Micro Grid

Jonathan Fürst
IT University of

Copenhagen
Copenhagen, Denmark 2300

Email: jonf@itu.dk

Nik Gawinowski
IT University of

Copenhagen
Copenhagen, Denmark 2300

Email: nikg@itu.dk

Sebastian Büttrich
IT University of

Copenhagen
Copenhagen, Denmark 2300

Email: sbut@itu.dk

Philippe Bonnet
IT University of

Copenhagen
Copenhagen, Denmark 2300

Email: phbo@itu.dk

Abstract—Access to modern energy services should be univer-
sally available by 2030. This is a goal of the United Nations. A
promising approach to deliver on this commitment is based on
microgrids that coordinate power generation, storage and usage
in a local community. Microgrids constitute an attractive option
in the presence of abundant renewable energy sources, and in
the absence of robust transnational power grid infrastructure.
An important problem is then to design cheap, resilient and
configurable microgrids that can be assembled from off-the-shelf
components and managed by non specialists. In this paper, we
introduce COSMGrid, a microgrid platform based on commodity
hardware and open source, open protocol software. The design of
COSMGrid relies on a network of microcontrollers that monitor
and control stand-alone power generation and storage nodes. As
a result, COSMGrid can readily integrate existing stand-alone
photovoltaic installations. COSMGrid can be configured based
on the characteristics of the power electronics hardware that is
available, or based on the power sharing policies agreed upon
by a community of end-users. It is an important step towards
a popular, open microgrid solution that can be appropriated by
local communities in developing regions.

I. INTRODUCTION

Populations in developing countries lack access to modern
energy services. Estimates show that 1.4 billion people do not
have access to electricity, that 1 billion people have only access
to unreliable electricity networks and that 2.5 billion people
rely on traditional biomass (mostly wood) for cooking [1].
The situation is particularly severe in rural areas where there
is no access to a functioning national power grid. This is a
significant problem with respect to the necessary reduction of
CO2 emissions. Indeed, relying on burning wood or on diesel
motors for energy services is harmful for the environment (e.g.,
it causes desertification or pollution) and it is hindering further
social and economic development (see e.g., [2], [3], [4]). This
is why the United Nations have set it as a goal to achieve
universal access to modern energy services by 2030 [1].

Two key enabling technologies that will support this
evolution are renewable energy and ICT (Information and
Communications Technology). Renewables allow a CO2 free
generation of electrical energy, while ICT plays an impor-
tant supporting role in terms of their efficient usage. The
geographical location of many developing countries makes
photovoltaic (PV) power a suitable solution. Studies have
shown for instance that PV can already compete or even
be more economical than diesel power generation for rural
solutions in Africa [5]. PV power has higher initial costs, but
maintenance and operating costs are much lower. The lifetime
cost for a small-scale system is less than for a diesel system
[6].

PV systems can be stand-alone or connected to a microgrid.
A microgrid connects a local community of producers and
consumers. It can be sized from the scale of a handful houses
up to a whole village. In a stand-alone system, PV generation
is directly linked to sun insolation. As a result, there is no PV
generation at night. Batteries are usually introduced to relax
this constraint and to store energy produced during the day-
time. Batteries must be dimensioned properly, so that energy
outages are minimized. This is a complex problem. A solution
is to over-engineer the installed system to guarantee a large
range of operating modes. However, such over-engineering
leads to high costs and low utilization on average. Microgrids
solve this problem in an elegant and efficient way. Microgrids
lessen the total energy storage needed because storage is
physically or virtually shared between the participants of the
microgrid, allowing a much more configurable, efficient and
reliable system.

While numerous microgrid approaches have been pro-
posed, they all require specific power electronics for their
operation. By contrast, we present in this paper the design of
COSMGrid, a microgrid that (i) is based on already existing
hardware (e.g., that could be deployed in a legacy stand-alone
system), (ii) relies on economical off-the-shelf power elec-
tronic hardware for the composition of the microgrid and (iii)
has an “open” monitor and control architecture that is based
on a popular microcontroller platform. We have implemented
and evaluated our design in form of a testbed using AVR
microcontrollers (Arduino).

II. RELATED WORK

The research on microgrids and its practical application
follows two main architectural approaches. The first approach
imitates the structure of the national grid by centralizing
access to multiple power generation devices through a common
battery bank. The battery bank is charged by different energy
producers, for example a PV plant or a wind mill owned
by different members of the community. An inverter is then
providing energy from this battery bank to all households.
Examples or microgrids applying this design can e.g. be found
in [7].

The second approach is most interesting as it allows to
integrate legacy devices. It connects multiple distributed energy
producers in parallel. These producers are then interconnected
through either a DC or an AC grid. Controlling parallel
renewable power sources can be done in one of the following
ways. First, control can follow a master-slave control scheme.
An inverter converts the DC directly from the PV panel into

978-1-4799-2402-8/13/$31.00 ©2013 IEEE 96 IEEE 2013 Global Humanitarian Technology Conference

AC that is fed it into the grid. Off the shelf grid tie inverters
(GTIs) are designed to work directly with solar panels without
a battery buffer, and their internal control mechanism is always
trying to track the maximum power point (MPPT), as power
would be lost otherwise (see [8] [9]). The master inverter is
setting the voltage and frequency for the whole microgrid.
The slaves act as current sources, adjusting frequency and
voltage accordingly (see e.g. [10]). Second, control can be
established with an average current sharing control scheme
that administers the distribution of current by using average
control distribution signals. Third, control can be implemented
autonomously at each distributed source by droop control.
Droop control, in which the behavior of power generators is
simulated, is the probably most used method. It is for instance
used in [11]. Marwali et al. [12] combines both average current
sharing control and droop control.

With COSMGrid, we follow the master/slave approach for
connecting multiple producers and consumers in parallel. Our
design relies on batteries to store the energy produced by
renewable sources. We thus had to devise a power control
mechanism to measure the output of inverters and regulate
their behavior.

III. COSMGRID DESIGN

The design of COSMGrid is modular, consisting of micro-
grid nodes that can be freely connected with each other. Nodes
can represent different entities, e.g. single households, building
components, or a common infrastructure (e.g. street lightning).
Each node is equipped with two inverters: a sine wave inverter
and a grid-tie inverter. The sine wave inverter provides the
voltage, frequency and phase for the whole microgrid. There
is thus a single node in the system whose sine wave inverter
is active at any point in time. This node is the master of the
microgrid. The grid-tie inverter (GTI) converts the DC from
the batteries (or directly from a renewable energy source) and
feeds it into the microgrid as required. All nodes, except the
master, are slaves and rely on their GTI to adapt their state
to the microgrid conditions fixed by the master. Master and
slave roles are not static. They change over the lifetime of the
microgrid, depending on factors that may for example include
the battery level and the actual PV production. The same goes
for microgrids themselves. Nodes can theoretically change
their membership (from microgrid to another) dependent on
the current power requirements or user preferences.

There can be variations to the default design. Some nodes
could just have one inverter and not use a battery storage at
all. A possible system showing our design using two nodes
can be seen in Figure 1.

The COSMGrid node design is based on a generic view of
the underlying off-the-shelf hardware components (renewable
source, sine wave inverter, GTI). As a result, COSMGrid relies
on a monitor and control infrastructure, de-coupled from power
electronics, to operate the microgrid.

Existing GTIs are adjusting to the frequency, voltage and
phase but are always pushing the maximum available power
into the grid. As our design is usually running the inverters
from the batteries, this means that they will always provide the
maximum amount up to their power ratings until the battery
storage is empty. This raises two problems, (i) it will discharge

the batteries very fast and more significant, (ii) it will most
likely lead to a scenario where we have too much power
inside the grid, leading to physical destruction of the grid
infrastructure as well as power outages.

We do not aim at redesigning GTIs. Instead, we designed
a monitoring, control and communication structure to adapt
the behavior of off-the-shelf GTIs in our microgrid. As we are
not implementing the current control internally by changing
the software logic of the GTI, we need to be able to turn off
load if there is not enough power available and we need to
be able to turn off GTIs when there is too much power in the
grid. We are thus faced with a scheduling problem, which is
a classical problem in distributed systems. More specifically,
the issues we need to address are: (a) How to detect whether
there is enough/too much/not enough power available in the
grid? (b) How to control which loads and GTIs should be
turned on/off? Overall, the question is whether we can build a
system that can live up to these requirements. Specifically, we
should investigate whether we can turn on/off GTIs and loads
fast enough with respect to the situation on the grid to avoid
power outages and component destruction.

The monitoring and control infrastructure of COSMGrid
relies on hardware as well as software components. It can be
programmed to support a range of usage policies. For instance,
we are envisaging the addition of a micro payment mechanism
between node owners, transforming them into micro-energy
companies. This is a topic for future work. With this modular
and open design, our goal is to enable a grassroots based
development of small microgrids that can be an alternative
to the national grid in rural areas.

IV. COSMGRID HARDWARE

We implemented the COSMGrid design with a simple
testbed based on two nodes and one type of load. We are
deliberately using inexpensive power electronic devices to
implement the system. By using inexpensive devices, we show
that a basic working microgrid structure can be achieved at
low cost. The total cost of approx. e 250 for our solution of
two inverters and its monitor and control infrastructure should
be compared to the cost of commercial inverters that support
parallel operations out of the box such as, (i) the Victron
Energy MultiPlus, limited to 6 nodes in parallel, at e 900, (ii)
the Studer Xtender Series at e 1000, or (iii) the SMA Sunny
Island at e 3000. Our basic setup consists of a 300W pure
sine wave inverter, a 300W GTI and microcontroller / sensor
parts1. Each node in our testbed, also includes a 100W PV
panel, a 100 Ah battery, and charge controller.

Our implementation of COSMGrid relies on a centralized
architecture, i.e., we introduce a central unit to which all the
nodes are connected. The central unit receives monitoring data
from the nodes and sends control signals back to them. It
also stores past data in order to learn from it and adapt its
actions accordingly. We are using the ARM powered Raspberry
Pi to implement the central unit due to its low cost, its

1The cost based on current (May 2013) prices in Denmark is as follows:
300W GTI e 75, 300W Pure Sine Inverter e 80, Micro Controller and
Monitor Parts e 100 (Arduino Uno e 24, DC Current sensors e 28, AC
Current Transformer sensor e 22, 8 channel relay e 15, AC/AC Transformer
Sensor e 6, Resistors/Capacitors/Cables e 5) for an approximate total of
e 250.

sufficient computing capabilities and its generic programming
capabilities [13].

Each node uses an AVR microcontroller (Arduino platform)
that is controlling and monitoring the node locally and com-
municating with the central unit. The sensors used to monitor
the grid are:

• Split Core Transformer. For measuring alternating
current after the inverters and at the node’s load.

• AC to AC Power Adapter. For measuring AC voltage
at the node’s load.

• Hall Effect Based Current Sensor. For measuring
direct current to and from the battery.

• A Voltage Divider. For measuring the voltage of the
battery.

Mechanical relays are used to control the flow of current in
our microgrid. This is necessary to balance the energy in the
microgrid (demand and supply in the microgrid need always
to match). A cable connection is used for communication
between the central unit and the Arduino boards in our testbed.
More mature iterations of our system will most likely rely on
a form of wireless communication.

Solar Panel Charge
Controller

Battery

Micro Grid Node 1
(MASTER)

GTI

Si
ne

In

ve
rte

r

AC Bus

Node Load 1

Solar PanelCharge
Controller

Battery

GTI

Sine
Inverter

Node Load 1

Micro Grid Node 2
(SLAVE)

Node Load 2

Node Load 2

V

V

I

I

I

I

I

I

I

I

I

I

V

V

AC

DCAC

D
C

DC

AC

AC
D
C

Fig. 1. COSMGrid Hardware Architecture

Figure 1 shows the position of the different sensors and
relays for a single node. Starting from the DC side, we have
one hall-effect based current sensor measuring the current
going into the battery and one that is measuring what is going
into the inverter. A voltage sensor is measuring the voltage at
the battery. In this constellation we are able to monitor the
battery level and how much we feed into the grid directly.
The present production can easily be calculated with this
information.

Moving on to the AC side we use three split core transform-
ers to sensor the current coming out of the sine wave inverter
and GTI, as well as the current going towards the microgrid.
This combined with a voltage sensor allows us to calculate
all relevant power values (active, apparent, reactive) and their
physical direction.

For the control part we are using six relays in total. Two
relays for both, live and neutral after our sine inverter and one
relay at the live after the GTI. The reason for only using one
relay after the GTI is that by design it will shut down if there
is already one conductor (live or neutral cable) not connected
due to its anti-islanding requirement.2 Having the relays on the
AC and not the DC side assures that their current limit will
not be exceeded. In addition, we are using a relay to be able
to cut off/turn on each load, and two relays to close/open the
connection of a node’s system towards the microgrid.

V. COSMGRID SOFTWARE

In our centralized architecture, each node is monitoring
its status and the grid status and communicating to the central
unit. The central unit takes control decisions and communicates
them back to the node, which executes them. In our testbed, we
rely on Arduino motes to implement monitoring and control
on the nodes, while we rely on Python scripts running on a
Raspberry Pi for the central unit. In addition, a web server is
running, providing a web interface for node owners and the
grid administrator. Visualization is provided through a local
ThingSpeak server. In the rest of the section, we describe the
software system installed on the microcontroller at the node
and on the central unit.3

A. Microcontroller at the Node

The AVR microcontroller has three main tasks: (i) it
collects and processes data from various sensors, (ii) it com-
municates with the central unit and (iii) it controls the relays
based on the commands it receives from the central unit or
based on its self-protection mechanism logic. The key issues
form a design point of view are whether we can collect precise
enough data, and process it fast enough so that our system can
control the microgrid in a timely fashion.

1) Monitoring the State of the Microgrid: All previously
mentioned sensors deliver an analog voltage signal to the
Arduino board. This analog signal is then converted by the
analog-to-digital converter (ADC) to a digital signal. The
ADC of the Arduino board provides a resolution of 10 bit
that correspond to integer values from 0–1023 [15]. This fact
is important when considering the accuracy for each sensor.
Even a 100% precise sensor will not give 100% precise
digital values. The 10 bit resolution, in combination with the
Arduino’s 5 V reference voltage, leads to 5 V/1024 = 4.9 mV
as the smallest detectable voltage.

a) Sampling Rate: There are different constraints to our
sampling rate. Firstly the ADC converter is limited by the clock
speed of the processor. When the prescale factor is set to 128
with a clock speed of 16 MHz it relates to 16 MHz/128 =
125 kHz (see wiring.c [16]). One conversion from analog
to digital takes 13 clock cycles which leads to 125 kHz/13 =
9600 Hz. This value corresponds to the sampling rate of around
10.000 times per second mentioned from the Arduino data
sheet.

We decided to choose integer types to be sent over the
serial port. As integers are represented by 16 bit, we will

2Anti-islanding protection is shutting the GTI down in case of a grid failure,
like for example a power outage [14].

3The source code can be found on https://github.com/jf87/COSMGrid.

theoretically be able to send 7200 integer values per second.4
To still maintain a higher sampling rate, we are going to
calculate average values of sampled data. But more about this
in the single sensor sections.

All sampling tasks are structured in one function named
collectData(), which is called from the loop() function
and therefore itself looping during the whole lifetime of the
node.

b) DC Voltage Sensor: We use a simple voltage divider
to measure the battery voltage with the maximum input range
of 5 V of the Arduino. The accuracy that can be theoretical
achieved is a resolution of:

5 V

1024
· 20 V
5 V

= 10 mV (1)

c) Directed Current Sensor: The hall-effect based cur-
rent sensor is giving voltages from 0–5 V, corresponding to
ampere values of −50 to 50 A. This means that for a current
of 0 A, the sensor will theoretically return a value of exactly
2.5 V (511-512 as analog read). Its sensitivity is 40 mV/A.
With the ADC converter resolution of 1024 bit we can obtain
the actual sensor resolution with:

5 V

1024 · 0.04 V/A
= 0.122 A (2)

d) Alternating Current and Voltage Sensor: On the AC
side we are using a split core transformer and an AC/AC
adapter for measuring current and voltage respectively. Using
this combination of a simultaneous measurement of current
and voltage curves enables us to get precise values for the
different power types.

The setup of a voltage and current sensor in combination
with the Arduino platform is already for most parts been done
by the openenergymonitor.org project. They provide a library
that includes the AC power calculations. For AC it is more
important than it is for DC to take samples in a relatively
fast rate. Even assuming, voltage/current perfectly following a
sinus curve, according to the Nyquist theory, a minimum of
100 Hz is needed [17].

To eliminate potential alias frequencies and to reproduce
an accurate waveform, sampling frequencies of 10 times the
input frequency are recommended. Using the default settings in
the library there are around 53 samples taken per wave cycle,
leading to around 2650 samples per second [18]. Modifications
we added were functions for returning the RMS (Root mean
square) voltage and active power.

2) Controlling the Flow of Power: The mandatory require-
ment to avoid failure within the microgrid is addressed by the
control part. Two rationales for control procedures are defined:
(i) to enforce a balancing policy, and (ii) to avoid faults in
the grid. There are also two places where a control can be
triggered: (i) in the logic of the Arduino itself, and (ii) inside
the central unit. In the following we discuss the software of
the Arduino. We discuss control in the central unit in B.

We abstract the switching of relays in the context of a
state machine. We call each state a mode. Modes represent the

4 115200 bit/s
16 bit/integer = 7200 integer/second.

settings for all the relays at one point in time. For example if
we want a node to be disconnected from the grid and to only
use its own produced power and stored energy, we set the
relays to a predefined state. In this case, relays to the grid and
GTI would be open whilst at the same time the relays to the
load and sine wave inverter would be closed. This ensures that
relays are never set in a way that contradicts to each other and
results in hardware defects and failures.

a) Self Protection Function in the Arduino: Mode
switches can also be triggered by an internal Arduino logic.
If communication to the central control unit gets disrupted, or
commands by the Arduino are not executed in time a simple
safety function is implemented. The power flow in front of the
master sine wave inverter is steadily monitored, as we must
avoid power flowing the wrong direction inside the inverter.
In case where the power monitored is about to reach zero,
emergency actions are taken by cutting off the affected inverter
from the grid.

3) Communication with the Central Unit: We differentiate
between two different types of sensor information, (i) instant
sensor information, and (ii) averaged sensor information. We
require instant sensor information from the AC sensor and the
AC voltage sensor on the AC side of the inverters, because we
need to react quickly to stop power going into the inverters.
For the other sensors it is sufficient to send their averaged
data every minute. These data is only needed to implement the
usage policies and to build up knowledge of the consumption
and production patterns.

B. Central Unit

The central unit is performing three main tasks: (i) it is
making decisions in regards to balancing the power in the
microgrid; (ii) it is performing the collection of sensor data
and storing it in a database; (iii) it is running a web application
for visualization purposes and to allow node owners to make
policy settings (which we do not describe here for lack of
space).

The software is implemented in Python, using pySerial
(http://pyserial.sourceforge.net) for communication with the
Arduinos and CherryPy (http://cherrypy.org) as a web frame-
work. So we are more or less following the client/server
pattern. We leave the definition of a decentralized, peer-to-peer
solution as future work.

1) Controlling the Nodes: From the central unit point of
view, microgrid nodes are like black boxes in terms of their
available PV power, their inverter’s power ratings and amount
of battery storage. New nodes can be connected to the micro-
grid, whereas some nodes might be disconnected during the
lifetime of the grid. In the following, we describe how we deal
with node connection and disconnection. Nodes connected to
the central unit are identified and assigned a unique ID. This ID
is saved in the EEPROM (Electrically Erasable Programmable
Read-Only Memory) to ensure consistency with the naming of
the nodes. Once a node is connected to the grid, it will keep
its unique ID forever and no two nodes will have the same ID.
A default start mode is defined for a new node connecting to
the grid. After a first set of sensor values from all the nodes
connected to the microgrid is sent to the central unit, the central
unit choses a node to be the master node. This is based on

two factors, the battery level and the energy production. The
central unit regularly checks for new nodes that haven’t been
connected to the microgrid yet. The central unit ensures the
safety of the microgrid by taking actions in case of (i) too
much power in the microgrid, and (ii) not enough power in
the microgrid: (i) too much power in the grid is checked by
monitoring the active power in front of the inverter of the
master node (sine wave inverter). Precisely, if current from
the microgrid is about to flow into the inverter, it is a sign
that there is too much power in the grid. Countermeasures
are, firstly the increase of load, and secondly the decrease
of power by turning off a GTI. (ii) Not enough power in
the grid is checked by monitoring voltage. When the voltage
level drops significantly, there is not enough power available.
Countermeasures are firstly, the decrease of load by switching
on a node (e.g., it is set in a mode where the local load is
powered by the sine wave inverter and the GTI is providing
power to the grid simultaneously) and secondly, the decrease of
load by actually switching load off (introducing load priority
to influence the scheduling of load switch-off is a topic for
future work).

2) Data Collection and Storage: Apart from the control
part, sensor data are collected for visualization purposes. Our
system uses two databases. One contains just very recent
values necessary for decisions to keep the microgrid alive.
The second database contains averaged values that are used
for visualization and in the future for control decisions based
on policies or past learnt effects.

VI. TESTBED EVALUATION

The evaluation of our microgrid design focuses on whether
our testbed can react fast enough to changing conditions. More
specifically, we study how our system reacts to overload in the
microgrid or how fast our system can turn on/off a GTI.

We measure the conditions in the microgrid with a basic
oscilloscope (PicoScope 3204, bandwidth 60 MHz and maxi-
mum sampling Rate 500 MS/s). In stand-alone mode we reach
an efficiency of 81% at the beginning of the load spectrum of
the inverter, 84% in the middle and 82% at the top. Our chosen
GTI shows an efficiency of 72%. For the whole microgrid we
measured a total efficiency of 78%, when sine wave inverter
and GTI are run in parallel. Efficiency is defined in terms of
how much power is preserved after the losses due to conversion
from DC (of battery or solar panel) to AC and the losses due
to the grid forming process between parallel inverters.

A. Reaction to Overload in the Microgrid

This experiment aims at showing the reaction time (latency)
of our grid control mechanism with respect to an overload in
the grid. An overload in this case means that we switch on
loads that collectively require more power than is available
power in the grid at that point in time.

Tests are done with two nodes in parallel. Loads consist
of resistive loads in form of 100W incandescent light bulbs
that can be switched on or off individually. One node is
the master node of the system and the other node runs as
GRIDSUPPORTED (in a mode where it does not contribute to
the grid). Then we switch too much load on at the slave node
(at 40 ms on the x-axis on figure 2). This triggers a startup

Fig. 2. Reaction to Overload

of the GTI and relay switches (so that the node actually feeds
power into the microgrid). Measurement of voltage and current
is done at the master node.

After switching on too much load the inverter(s) can not
keep holding the voltage and current, causing a distortion
and drop (between 40 and 46 ms on the x-axis on figure 2).
The grid’s sensors measure this drop and the micro controller
is executing counter measure commands in form of relay
switches. In figure 2 the system reacts in only 20 ms. During
several tries we came to values ranging from 20 to 600 ms.

The reaction time seems to depend on (i), the current
execution state of the software when the load is switched on
and (ii), on the magnitude of the load that is switched on
(50W, 100W, 200W etc.). We cannot predict the current
running state of the software when an overload occurs. As
such we cannot change this fact. It is however possible to
change the sensitivity to voltage drops in our software. For
example reacting already to small drops. But we need to make
a tradeoff between normal fluctuations in the voltage curve
(for example the decrease in voltage due to switching on of a
load) and the drop in voltage due to a “real” overload.

B. Grid Tie Inverter Startup Process

An important element in our microgrid is the start-up time
of the GTI. Switching a GTI on, it has to track the voltage and
current curves of the existing grid. After monitoring several
cycles it will start pushing power slowly into the grid. This
experiment will show us factors that influence the latency
(e.g. the type of load). Understanding the exact delay will be
important for further software improvements.

Tests are done with two nodes in parallel. Loads consist
again of resistive loads in form of 100W incandescent light
bulbs that can be switched individually. Then we switch on
too much load to cause the GTI to start up. Time is measured
until the GTI is fully operational.

As figure 3 shows the GTI slowly pushes more power into
the grid until it reaches its maximum (300W) after 52s. In
average our measurements showed a start-up time of 50s. After
reaching the maximum, the power output fluctuates by 50W.
Several experiments have shown that the actual load in the grid
does not have an affect on this time.

We did not find any correlation between the load and the
start-up latency of the GTI. Because we cannot change this

-50

0

50

100

150

200

250

300

350

400

0
3

:4
7

:0
3

0
3

:4
7

:1
2

0
3

:4
7

:2
0

0
3

:4
7

:2
9

0
3

:4
7

:3
8

0
3

:4
7

:4
9

0
3

:4
7

:5
8

0
3

:4
8

:0
7

0
3

:4
8

:1
5

0
3

:4
8

:2
4

0
3

:4
8

:3
4

0
3

:4
8

:4
3

0
3

:4
8

:5
2

0
3

:4
9

:0
0

0
3

:4
9

:0
9

0
3

:4
9

:1
8

0
3

:4
9

:2
6

0
3

:4
9

:3
5

0
3

:4
9

:4
4

0
3

:4
9

:5
2

0
3

:5
0

:0
1

0
3

:5
0

:0
9

0
3

:5
0

:1
8

0
3

:5
0

:2
7

0
3

:5
0

:3
5

0
3

:5
0

:4
4

0
3

:5
0

:5
3

0
3

:5
1

:0
1

0
3

:5
1

:1
0

0
3

:5
1

:1
9

0
3

:5
1

:2
7

0
3

:5
1

:3
6

0
3

:5
1

:4
5

0
3

:5
1

:5
3

0
3

:5
2

:0
2

0
3

:5
2

:1
1

0
3

:5
2

:1
9

0
3

:5
2

:2
8

0
3

:5
2

:3
6

0
3

:5
2

:4
5

0
3

:5
2

:5
4

0
3

:5
3

:0
2

0
3

:5
3

:1
1

0
3

:5
3

:2
0

0
3

:5
3

:2
8

0
3

:5
3

:3
7

0
3

:5
3

:4
6

0
3

:5
3

:5
4

0
3

:5
4

:0
3

0
3

:5
4

:1
2

0
3

:5
4

:2
0

0
3

:5
4

:2
9

W
at

ts

GTI True Power

Fig. 3. GTI Active Power Output

timing constraint, we need to consider it in our software and
design of the microgrid to avoid power outages due to the
start-up process.

VII. CONCLUSION

In this paper, we presented the design, implementation
and evaluation of COSMGrid, a microgrid based on off-
the-shelf components. Basing the system on existing power
electronics hardware lowers the costs and thereby the entry
level for potential users, but it also allows us to transform
existing stand-alone systems into systems that are part of
a microgrid. Lowering the entry level for potential users is
especially important in regards to the high initial costs of PV
power [6]. This is supported by the modular structure of our
design. We want to minimize common costs for a microgrid
community. Many systems rely for instance on a common
battery bank. Participants need to agree and invest together
on it. Allowing our system to be built on existing hardware of
a stand-alone system allows the incremental composition of a
microgrid. Some people may start connecting themselves from
the beginning to the microgrid, while others join it gradually,
dependent on their available resources. Future work includes
more thorough evaluation with multiple nodes in the presence
of a variety of threats to the microgrid operation, the design
of a decentralized monitoring and control solutions, as well as
the deployment of COSMGrid in a range of use cases.

REFERENCES

[1] U. N. D. Programme, “Energy for a sustainable future: The secretary-
general’s advisory group on energy and climate change summary report
and recommendations,” UNDP, Tech. Rep., New York, 2010.

[2] T. A. Benjaminsen, “Fuelwood and desertification: Sahel orthodoxies
discussed on the basis of field data from the gourma region in mali,”
Geoforum, vol. 24, no. 4, pp. 397–409, 1993.

[3] E. Audu, “Fuel wood consumption and desertification in nigeria,”
International Journal of Science and Technology, vol. 3, no. 1, 2013.

[4] R. M. Hassan and G. Hertzler, “Deforestation from the overexploitation
of wood resources as a cooking fuel: a dynamic approach to pricing
energy resources in sudan,” Energy economics, vol. 10, no. 2, pp. 163–
168, 1988.

[5] S. Szabó, K. Bódis, T. Huld, and M. Moner-Girona, “Energy solutions in
rural africa: mapping electrification costs of distributed solar and diesel
generation versus grid extension,” Environmental Research Letters,
vol. 6, no. 3, p. 034002, 2011.

[6] M. Kolhe, S. Kolhe, and J. Joshi, “Economic viability of stand-alone
solar photovoltaic system in comparison with diesel-powered system
for india,” Energy Economics, vol. 24, no. 2, pp. 155–165, 2002.

[7] S. B. Bekiarov and A. Emadi, “Uninterruptible power supplies: classifi-
cation, operation, dynamics, and control,” in Applied Power Electronics
Conference and Exposition, 2002. APEC 2002. Seventeenth Annual
IEEE, vol. 1. IEEE, 2002, pp. 597–604.

[8] S. Kjaer, J. Pedersen, and F. Blaabjerg, “A review of single-phase grid-
connected inverters for photovoltaic modules,” Industry Applications,
IEEE Transactions on, vol. 41, no. 5, pp. 1292–1306, 2005.

[9] B. Yang, W. Li, Y. Zhao, and X. He, “Design and analysis of a
grid-connected photovoltaic power system,” Power Electronics, IEEE
Transactions on, vol. 25, no. 4, pp. 992–1000, 2010.

[10] W.-C. Lee, T.-K. Lee, S.-H. Lee, K.-H. Kim, D.-S. Hyun, and I.-Y. Suh,
“A master and slave control strategy for parallel operation of three-
phase ups systems with different ratings,” in Applied Power Electronics
Conference and Exposition, 2004. APEC’04. Nineteenth Annual IEEE,
vol. 1. IEEE, 2004, pp. 456–462.

[11] J. M. Guerrero, J. C. Vasquez, J. Matas, M. Castilla, and L. G.
de Vicuna, “Control strategy for flexible microgrid based on parallel
line-interactive ups systems,” Industrial Electronics, IEEE Transactions
on, vol. 56, no. 3, pp. 726–736, 2009.

[12] M. N. Marwali, J.-W. Jung, and A. Keyhani, “Control of distributed
generation systems-part ii: Load sharing control,” Power Electronics,
IEEE Transactions on, vol. 19, no. 6, pp. 1551–1561, 2004.

[13] Raspberry Pi - An ARM GNU/Linux box for 25 Dollars. Take a byte!,
Project Website. [Online]. Available: http://www.raspberrypi.org/

[14] R. M. Hudson, T. Thorne, F. Mekanik, M. R. Behnke, S. Gonzalez,
and J. Ginn, “Implementation and testing of anti-islanding algorithms
for ieee 929-2000 compliance of single phase photovoltaic inverters,”
in Photovoltaic Specialists Conference, 2002. Conference Record of the
Twenty-Ninth IEEE. IEEE, 2002, pp. 1414–1419.

[15] [Online]. Available: http://arduino.cc/en/Tutorial/AnalogInputPins
[16] wiring.c - arduino - Arduino is an open-source electronics

prototyping platform based on flexible, easy-to-use hardware
and software. - Google Project Hosting, Project Website.
[Online]. Available: http://code.google.com/p/arduino/source/browse/
trunk/hardware/arduino/cores/arduino/wiring.c

[17] Nyquist rate - Wikipedia, the free encyclopedia, Project Website.
[Online]. Available: http://en.wikipedia.org/wiki/Nyquist rate

[18] Explanation of the phase correction algorithm — OpenEnergyMonitor,
Project Website. [Online]. Available: http://openenergymonitor.org/
emon/buildingblocks/explanation-of-the-phase-correction-algorithm

