
Tutor4RL: Guiding Reinforcement Learning with External Knowledge

Mauricio Fadel Argerich, Jonathan Fürst, Bin Cheng
NEC Laboratories Europe

Kurfürsten-Anlage 36, 69115 Heidelberg, Germany
{mauricio.fadel@neclab.eu, jonathan.fuerst@neclab.eu, bin.cheng@neclab.eu}

Abstract

We introduce Tutor4RL, a method to improve reinforcement
learning (RL) performance during training, using external
knowledge to guide the agents’ decisions and experience.
Current approaches of RL need extensive experience to de-
liver good performance, something that is not acceptable in
many real systems when no simulation environment or con-
siderable previous data are available. In Tutor4RL, external
knowledge– such as expert or domain knowledge– is ex-
pressed as programmable functions that are fed to the RL
agent. During its first steps, the agent uses these knowledge
functions to decide the best action, guiding its exploration
and providing better performance from the start. As the agent
gathers experience, it increasingly exploits its learned policy,
eventually leaving its tutor behind. We demonstrate Tutor4RL
with a DQN agent. In our tests, Tutor4RL achieves more than
3 times higher reward in the beginning of its training than an
agent with no external knowledge.

Introduction
Reinforcement Learning (RL) has achieved great success
in fields such as robotics (Kober, Bagnell, and Peters
2013), recommender systems (Theocharous, Thomas, and
Ghavamzadeh 2015) and video games, in which RL has even
surpassed human performance (Mnih et al. 2015). However,
before achieving this, RL often poor performance for an ex-
tended time—possibly for millions of iterations—until it has
gathered enough experience. In practice, this problem is ap-
proached mainly with two RL techniques: (1) training via
simulation and (2) learning from historical data.

Recently, researchers have applied RL to computer sys-
tems tasks, such as database management system configu-
ration (Schaarschmidt et al. 2018) or container orchestra-
tion for Big Data systems (Fadel Argerich, Cheng, and Fürst
2019). Here, experience data for the specific task might not
be available (e.g., the complexity of a data analytic task de-
pends on the processed dataset, not known before) and the

Copyright c© 2020 held by the author(s). In A. Martin, K. Hinkel-
mann, H.-G. Fill, A. Gerber, D. Lenat, R. Stolle, F. van Harmelen
(Eds.), Proceedings of the AAAI 2020 Spring Symposium on Com-
bining Machine Learning and Knowledge Engineering in Practice
(AAAI-MAKE 2020). Stanford University, Palo Alto, California,
USA, March 23-25, 2020. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

context of the agent changes drastically with each deploy-
ment (e.g., the execution environment is different). Because
of this, data or simulation training are not feasible. Thus, the
agent needs to gather its experience online, from the perfor-
mance of a live system where each action the agent explores
has a real cost that impacts the system. To apply RL in such
scenarios, an agent needs to provide “good-enough” perfor-
mance from the start and act safely throughout the learn-
ing (Dulac-Arnold, Mankowitz, and Hester 2019)—a funda-
mental problem that must be solved to make RL applicable
to real world use cases.

However, in our application of RL for container orches-
tration in Big Data systems, we have experienced that some
knowledge of the environment is usually available before the
deployment of the agent. This knowledge includes common
heuristics or notions, well known to domain experts (e.g.,
DevOps engineers). In our work, we aim to make this knowl-
edge accessible to the RL agent. Our intuition is that just as
a person prepares for a task beforehand by gathering knowl-
edge from sources such as other human-beings, manuals,
etc., we can provide external knowledge that the RL agent
can use when not enough experience has been gathered.

To realize this concept, we introduce Tutor4RL, a method
that guides RL via external knowledge. In Tutor4RL, ex-
ternal knowledge– such as expert or domain knowledge –
is expressed as programmable functions that the agent will
use during its training phase, and especially its initial steps
to guide its behavior and learning. Thanks to Tutor4RL,
the agent can perform in a reliable way from the start and
achieve higher performance in a shorter training time. As
the RL agent gathers more experience, it learns its policy
and leaves the tutor behind, improving on its results thanks
to its empirical knowledge. We take some inspiration from
the recently proposed Data Programming concept for su-
pervised learning, in which functions developed by experts,
are used to encode weakly supervision sources (Ratner et al.
2017).

We test our approach with a DQN Agent in the Atari game
Breakout and compare it to a plain DQN Agent. In our tests,
Tutor4RL achieves more than a 3 times higher reward than
the plain agent in the beginning of its training, and keeps up
with its performance even after leaving the tutor behind, i.e.
only using its learned policy.

Background and Motivation
As illustrated in Figure 1 (Sutton, Barto, and others 1998),
in Reinforcement Learning (RL), an agent learns to control
an unknown environment to achieve a certain goal while in-
teracting with the environment. The agent interacts with the
environment in discrete time steps t = 0, 1, In each step,
the agent receives a representation st ∈ S of the state of
environment and a numerical signal rt called reward, and
performs an action at ∈ A that leads to the state st+1 and
reward rt+1, perceived by the agent in the next time step. S
and A represent the sets of states and actions respectively.

Reward

State
Action

Environment
𝑠"

𝑟"
𝑎"

Agent

Figure 1: The RL framework and its elements.

The agents’ behaviour is defined by its policy π, which
provides a mapping from states S to actions A. The value
function qπ(s, a) represents the expected future reward re-
ceived when taking action a at state s with a policy π. The
goal of the agent is to find a policy that maximizes cumula-
tive reward in the long run.

To do this, the agent learns from its experience for each
performed action at, and then uses the collected observa-
tions (st+1, rt+1) to optimize its policy π based on different
models of the value function, such as a Tabular model (Sut-
ton, Barto, and others 1998) or a deep neural network
model (Mnih et al. 2015). Existing studies show that RL can
lead to a reasonable model for determining which action to
take in each state after learning from a large number of ex-
perience data. However, the biggest problem is how the RL
agent can learn fast and efficiently from experience data.

There have been different approaches of addressing this
problem in the state of the art. A simple approach is to ex-
plore the state space randomly, but this approach is usually
time-consuming and costly when the state/action space is
large. The drawback of this approach has been reported by
our previous study (Fadel Argerich, Cheng, and Fürst 2019)
in the case of leveraging RL to automatically decide the
configuration and deployment actions of a data processing
pipeline in a cloud and edge environment.

Another approach is to gain experience via simulation.
With enough computational resources, we can easily pro-
duce lots of experience data in a short time, but it is difficult
to ensure that the simulated experiences are realistic enough
to reflect the actual situations in the observed system.

Recently, a new trend to leverage external knowledge
to improve the exploration efficiency of RL agents has
emerged. For example, in (Moreno et al. 2004) and (Hes-
ter et al. 2018), prior knowledge like pre-trained models and
policies are used to bootstrap the exploration phase of a RL
agent. However, this type of prior knowledge still originates

in previous training and is limited by the availability of such
data.

Instead of relying on any pre-trained model, we explore
how to utilize a set of programmable knowledge functions to
guide the exploration of a RL agent so that we can quickly
make effective decisions, even just after a few exploration
steps. We call our method Tutor4RL. Unlike existing ap-
proaches, Tutor4RL requires no previous training and is
therefore, a more practical approach for the use of RL in
real systems. To the best of our knowledge, Tutor4RL is the
first to apply programmable knowledge functions into RL
for improving training performance and sample efficiency.

Tutor4RL
Figure 2 shows our overall design of Tutor4RL. As com-
pared to traditional RL, we add a new component called Tu-
tor to guide the agent to make informed decisions during
training. The reason why the tutor is able to guide the agent
is because it can directly leverage a set of knowledge func-
tions defined by domain experts. In this way, Tutor4RL can
help the agent avoid any blind decisions at the beginning.
The tutor possesses external knowledge and interacts with
the agent during training. The tutor takes as input the state of
the environment, and outputs the action to take; in a similar
way to the agent’s policy. However, the tutor is implemented
as programmable functions, in which external knowledge is
used to decide the mapping between states and actions, e.g.,
for Atari Breakout, the tutor takes the frame from the video
game as input, and outputs in what direction the bar should
be moved. For every time step, the tutor interacts with the
agent and gives advise to the agent for making better deci-
sions, based on all provided knowledge functions.

One issue for the agent to consider is when and how often
it should ask for advise from the tutor. In a similar fashion
to Epsilon greedy exploration, we define τ as the threshold
parameter for the agent to control when it will take the sug-
gested actions from the tutor instead of its own decisions. τ
is a parameter of our model and the best value to initialize
it depends on the use case; thus its initial value is left to be
decided during implementation.

Reward

State
Action

Tutor

Agent

Environment

𝑟"
𝑠"

𝑎"

Domain
experts

knowledge
functions

Figure 2: Overall Working of Tutor4RL

Knowledge functions must be programmed by domain ex-
perts and allow them to easily bring different types of do-
main knowledge into the tutor component. Currently, Tu-
tor4RL considers the following two types of knowledge
functions: Constrain Functions and Guide Functions.

Constrain Functions are programmable functions that
constrain the behavior of the agent. At each time step t, a
constrain function takes the state of the environment as in-
put, and returns a vector to indicate whether an action in the
action space could be taken or not using the value 1 or 0; 1
represents the action is enabled while 0 represents the action
is disabled and cannot be performed for this state. Therefore,
constrain functions provide a mask to avoid unnecessary ac-
tions for certain states.

Guide Functions are programmable functions that ex-
press domain heuristics that the agent will use to guide its
decisions, especially in moments of high uncertainty, e.g. the
start of the learning process. Each guide function takes the
current RL state and reward as input, and outputs a vector
to represent the weight of each preferred action according to
the encoded domain knowledge.

The benefit of Tutor4RL is twofold:

1. During training, the tutor enables a reasonable perfor-
mance, opposed to the unreliable performance from an in-
experienced agent, while generating experience for train-
ing. Furthermore, the experience generated by the tutor is
important because it provides examples of good behavior.

2. The knowledge of the tutor does not need to be per-
fect or extensive. The tutor might have partial knowledge
about the environment, i.e. know what to do in certain
cases only, or might not have a perfectly accurate knowl-
edge. The tutor provides some ”rules of thumb” that the
agent can follow during training, and based on experience,
the agent can improve upon these decisions, achieving a
higher reward than the tutor.

Evaluation
We implement Tutor4RL by modifying the DQN (Mnih et
al. 2015) agent, using the library Keras-RL (Plappert 2016)
along with Tensorflow. In order to make our evaluation re-
producible, we choose a well-known workload for RL: play-
ing Atari games. In particular, we select the Atari game
Breakout, using the environment BreakoutDeterministic-v4
from OpenAI Gym (Brockman et al. 2016). We compare
our approach to a standard DQN agent as implemented by
Keras-RL and we use the same set of parameters for both,
the DQN agent with Tutor4RL and the one without. The pa-
rameters used for the agents are detailed in Table 1.

In the BreakoutDeterministic-v4 environment, the obser-
vation is a RGB image of the screen, which is an array of
shape (210, 160, 3) and four actions are available: no opera-
tion, fire (starts the game by ”throwing the ball”), right and
left. Each action is repeatedly performed for a duration of
k = 4 frames. In order to simplify the state space of our
agent, we pre-process each frame converting it to greyscale
and reducing its resolution to (105, 105, 1).

We implement a simple guide function that takes the pre-
processed frame, locates the the ball and the bar in the X

Parameter DQN DQN + Tutoring
Policy Epsilon greedy

Epsilon [0.3-0.1] decreasing linearly
through 0 to 1.75M steps

Gamma 0.99
Warmup steps 50000
Optimizer Adam with lr=0.00025

Tau - [1-0] decreasing linearly
through 0 to 1.5M

Table 1: Parameters used in evaluation.
axis, and returns ”fire” if no ball is found, or to move in the
direction of the ball (left or right) if the ball is not above
the bar. The simplified code for this function can be seen in
Listing 1. In addition, we also include the simplified code the
agent uses in each step of its training in Listing 2, choosing
between the tutor decision and the policy decision.

def guide_function(obs):
Find bar and ball in frame.
bar_x_left, bar_x_right = \

find_bar_edges_x(obs)
ball_x = find_ball(observation)
if ball_x != None:

Where to move bar.
if bar_x_left > ball_x:

return [0, 0, 0, 1] # left
elif bar_x_right < ball_x > 0:

return [0, 0, 1, 0] # right
return [0, 1, 0, 0] # fire

Listing 1: Our implementation of a guide function for
Breakout. We check the position of the ball and the bar in
the current frame and move the bar towards the ball.

def select_action(obs, tau, guide_function):
if numpy.random.uniform() < tau:

Use tutor.
tf_output = guide_function(obs)
action = numpy.argmax(tf_output)

else:
Use policy normally.
action = policy.select_action()

return action

Listing 2: Selection of action when training the agent.

Figure 3 depicts the mean reward per episode of the plain
DQN agent and DQN agent with Tutor4RL during train-
ing. During the beginning of the training and until step
500, 000, the plain DQN Agent shows an expected low re-
ward (< 15 points) because it starts with no knowledge,
while the DQN Agent with Tutor4RL—thanks to the use
of its tutor knowledge—manages to achieve a mean reward
between 15 and 35 points, ca. double the maximum of the
plain DQN Agent. From step 500, 000 we see how the plain
DQN agent starts to improve, but its not until step 1.1M
that the plain DQN agent shows equally good results as the
tutored one. From there we see a similar reward for both
agents,, with DQN Agent + Tutor4RL achieving a slightly
higher mean reward in most cases. Because τ is decreased
uniformly throughout training, the tutor is used less as train-
ing progresses. Finally, in step 1.5M, τ = 0 and the tutor is

Figure 3: Average mean reward per episode achieved by plain DQN agent and DQN agent with Tutor4RL during training. Data
was averaged over 4 tests for each agent and with a rolling mean of 20 episodes, bands show 0.90 confidence interval.

no longer used. It is important to note that from this point on,
the reward does not decrease but it keeps improving with the
agent’s learning. Moreover, we test both agents after 1.75M
steps: the plain DQN agent achieves an average reward of
40.75 points while Tutor4RL achieves a reward of 43. Note
that this reward comes only from the learned policy of the
agents and keeping ε = 0.05, i.e. no tutor knowledge is used.

Discussion and Future Work
Tutor4RL is ongoing research and as such we plan to de-
velop several improvements. First, the decision about when
to use the tutor is an important aspect to our approach. Cur-
rently, we are using τ as a parameter that decreases as the
agent gathers more experience in each step. However, this
can be improved to take into account the actual learning of
the agent, i.e. how ”good” are the actions selected by the
policy, or how certain the policy is about the action to be
taken in the given state. Second, as discussed before, we
plan to evaluate constrain functions to limit the behavior of
the agent. This can help in situations in which an action does
not make sense, e.g. in Breakout, moving the bar to the left
when it’s already in its most left position. Last, the accu-
racy of guide functions can vary and thus, the decisions of
the Tutor can be improved by weighting the decisions of the
functions according to their accuracy.

Conclusion
We have demonstrated Tutor4RL, a method that uses exter-
nal knowledge functions to improve the initial performance
of reinforcement learning agents. Tutor4RL targets deploy-
ment scenarios where historical data for training is not avail-
able and building a simulator is impractical. Our results
show that Tutor4RL achieves 3 times higher reward than an
agent without using external knowledge in its initial stage.

Acknowledgments
The research leading to these results has re-
ceived funding from the European Commu-
nity’s Horizon 2020 research and innovation
programme under grant agreement no 779747.

References
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schul-
man, J.; Tang, J.; and Zaremba, W. 2016. Openai gym. arXiv
preprint arXiv:1606.01540.
Dulac-Arnold, G.; Mankowitz, D.; and Hester, T. 2019. Chal-
lenges of real-world reinforcement learning. arXiv preprint
arXiv:1904.12901.
Fadel Argerich, M.; Cheng, B.; and Fürst, J. 2019. Reinforce-
ment learning based orchestration for elastic services. arXiv
preprint arXiv:1904.12676.
Hester, T.; Vecerik, M.; Pietquin, O.; Lanctot, M.; Schaul, T.;
Piot, B.; Horgan, D.; Quan, J.; Sendonaris, A.; Osband, I.; et al.
2018. Deep q-learning from demonstrations. In Thirty-Second
AAAI Conference on Artificial Intelligence.
Kober, J.; Bagnell, J. A.; and Peters, J. 2013. Reinforcement
learning in robotics: A survey. The International Journal of
Robotics Research 32(11):1238–1274.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.;
Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.;
Ostrovski, G.; et al. 2015. Human-level control through deep
reinforcement learning. Nature 518.
Moreno, D. L.; Regueiro, C. V.; Iglesias, R.; and Barro, S. 2004.
Using prior knowledge to improve reinforcement learning in
mobile robotics. Proc. Towards Autonomous Robotics Systems.
Univ. of Essex, UK.
Plappert, M. 2016. keras-rl. https://github.com/keras-rl/keras-
rl.
Ratner, A.; Bach, S. H.; Ehrenberg, H.; Fries, J.; Wu, S.; and
Ré, C. 2017. Snorkel: Rapid training data creation with weak
supervision. Proceedings of the VLDB Endowment 11(3).
Schaarschmidt, M.; Kuhnle, A.; Ellis, B.; Fricke, K.; Gessert,
F.; and Yoneki, E. 2018. Lift: Reinforcement learning in com-
puter systems by learning from demonstrations. arXiv preprint
arXiv:1808.07903.
Sutton, R. S.; Barto, A. G.; et al. 1998. Introduction to rein-
forcement learning, volume 2. MIT press Cambridge.
Theocharous, G.; Thomas, P. S.; and Ghavamzadeh, M. 2015.
Personalized ad recommendation systems for life-time value
optimization with guarantees. In Twenty-Fourth International
Joint Conference on Artificial Intelligence.

