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ABSTRACT
Buildings are increasingly equipped with smart appliances
that allow a fine grained adaption to personal comfort re-
quirements. Such comfort adaption should be based on
a human-feedback loop and not on a centralized comfort
model. We argue that this feedback-loop should be achieved
through local interaction with smart appliances. Two issues
stand out: (1) How to impose logical locality when interact-
ing with a smart appliance? (2) How to mediate conflicts
between several persons in a room, or between building-wide
policies and user preferences? We approach both problems
by defining a general model for human-smart appliance in-
teraction. We present a prototype implementation with an
off-the-shelf smart lighting and heating system in a shared
office space. Our approach minimizes the need for location
metadata. It relies on a human-feedback loop (both sen-
sor based and manual) to identify the optimal setpoints for
lights and heating. These setpoints are determined by con-
sidering individual comfort preferences, current user location
and a global goal of minimizing energy consumption.

1. INTRODUCTION
Buildings are increasingly equipped with smart appliances

that allow a fine grained adaption to personal comfort re-
quirements. Compared to BMS, smart appliances enable
direct and fine grained forms of user interaction. However,
the current interface abstractions of smart appliances are
not well designed. They build on appliance metadata (e.g.,
a light is tagged with building, floor no., room no. and loca-
tion: ITU/4/4D21/Ceiling1) and possibly on localization.
Dynamic and logical human-appliance relations are difficult
to represent in metadata and with traditional localization:
Metadata requires that users know where they are located
(e.g., I am in 4D21) and where appliances are located in-
side. Added localization still requires that users know the
impact of appliances on them (e.g., which light affects me).
Further, most appliances affect more than one user. Indi-
vidual preferences are different. This makes it necessary to
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Figure 1: Human-Smart Appliance Interaction

mediate potential conflicts. Such mediation needs be based
on user comfort preferences, the current location of users
and the impact of appliances on them. Our requirements
for improved smart appliance interaction are thus:

(1) Logical Locality. Appliance identification should be
based on the impact (logical relation) on the single user.

(2) Conflict Mediation. Conflicts must be mediated
locally between users (considering their preferences), or be-
tween individual preferences and global infrastructure-use
policies.

We approach these requirements by (1) defining a model
for human-smart appliance interaction and (2) by imple-
menting a prototype with a smart lighting and heating sys-
tem in a shared office. Our approach minimizes the need for
location metadata. It relies on personal sensors (e.g., smart-
phones, wearables) and human-in-the-loop feedback to iden-
tify the optimal setpoints for lighting and heating. These
setpoints are determined by taking comfort preferences, cur-
rent physical and logical location and a minimal energy con-
sumption into account. Our prototype achieved 94% energy
efficiency for lighting using a probabilistic method of iden-
tification, while adhering to the occupants’ comfort ranges.
For heating, we achieved an improvement of 80% in comfort
while keeping a 3.3 ◦C lower overall heating setpoint.

2. INTERACTION MODEL
We adapt the smart environment to comfort needs of cur-

rent occupants by matching different environmental dimen-
sions like light, temperature, sound or air quality (see Fig-
ure 1). This matching is achieved by altering the output
of appliances according to their logical relation (e.g., the
user’s light state is too low → increase brightness of affect-
ing smart light). The bottom of Figure 1 shows the four
building blocks of our model. We now discuss each of them.



Comfort Translation. We translate comfort preferences
between human and appliances using relative intents (e.g., “I
am too cold/hot”). This decision is based on data collection
among 50 people at our campus on measured and perceived
temperature (the result shows a mean estimation error of
2.1 ◦C, single estimates are off by 8.6 ◦C).

Appliance Identification. We map appliances to their
environmental dimensions and then to individual occupants
by their logical relation. Some appliances influence more
than one dimension (e.g., heating influences temperature
and air quality; window shades influence light and temper-
ature). Multiple occupants are often influenced by a single
appliance (e.g., a ceiling light, room heating).

We base the dimensional mapping on metadata (e.g., a
lamp has primary light and secondary heat output) and con-
struct logical relations through a feedback loop that com-
bines human-input (“I am too hot.”) and sensor readings
(personal temperature, brightness sensor). Our model ab-
stracts these relations to a weighted property graph G =
(V,E). V and E have a set of key value pairs that represent
properties (e.g., type, primary/secondary output, current
state, edge cost). This graph of appliances, their output
and affected occupants is incrementally constructed using
the feedback-loop as input.

Comfort and Energy Optimization. We model com-
fort and energy optimization as constrained optimization,
with individual comfort preferences as hard constraints of a
building-wide energy optimization. When occupant prefer-
ences are divergent, our system provides strategies to me-
diate them: (1) By exploiting existing one-to-one mappings
(users with different lighting preferences, but individual desk
lights). (2) If the conflict cannot be solved in this way (only
a single heating for a room), our system provides aggrega-
tion based strategies (median of all user preferences).

3. IMPLEMENTATION AND RESULTS
Our testbed consists of a shared office (20 m2) with four

smart lights (Philips Hue) and three smart thermostats (eQ-
3 Homematic). Users access this setup from our Android app
through Bluetooth (see [1] for more details). We use the
phone’s light sensor to measure brightness at user locations
and store user comfort preferences for different rooms. We
use a Raspberry Pi to coordinate requests between users and
mediate conflicts. Users check-in to the room via our app
and manually switch identified appliances or let our system
decide on the best values based on comfort preferences.

Graph Exploration. To explore the graph, we put ver-
tices into different groups according to their environmen-
tal dimension. In an unexplored graph (room), we assign
each V a random probability and add it to a priority queue.
Our algorithm then iterates through that queue and modi-
fies each appliance state slightly, taking the sensor reading
and human input as feedback. If a threshold is reached, the
appliance setpoint is iteratively modified further. Both steps
are repeated until the individual preference value has been
reached (for lighting this takes <2 s). If the individual com-
fort level cannot be reached by these steps, we increase the
modification level. This allows to identify also weakly con-
nected appliances (e.g., a light with indirect radiation). The
resulting incomplete graph is stored on the user phones. If
a user visits the same room a second time, we use this infor-
mation to speed up identification (we pick the most probable
appliance first).
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Figure 2: Latency/efficiency for different strategies.

3.1 Results
Identification Time and Energy Efficiency. We eval-

uate different identification strategies: (i) Random (we pick
a random V ), (ii) Explore All (we explore all V ), (iii) Prob-
abilistic (we pick V based on past results). We perform
experiments at all three work desks of our office (see Fig-
ure 2). Exploration time grows linear with the number of
appliances. Because we implemented state transitions with
a delay of 1.5 s, it takes 7 s to identify all four lights. The
random strategy results are widespread. We might initially
pick a light with a strong logical relation, but in worst case,
we iterate through all lights. The probabilistic strategy iden-
tifies lights mostly on first, and latest on second try.

Exploring the whole graph can improve energy efficiency.
We define 100% energy efficiency when

∑
E.cost is mini-

mal for the set of lights and setpoints. Exploring the whole
graph ensures that the light(s) with the lowest cost are al-
ways chosen (100%). Random strategy results become more
spread with the number of lights (mean value 78%). The
probabilistic strategy achieves 94% mean.

Conflict Resolution. In our testbed, we are able to
mediate lighting conflicts by exploiting one-to-one relations.
However, room heating affects all occupants. To resolve con-
flicts, we set the heating setpoint to the median of the cur-
rent users. This maximizes comfort for most people, while
moderating outliers. Applied to our survey dataset, this re-
sults in a median of 21 ◦C, which is inside the comfort ranges
of 36 out of 50 persons. The temperature is 3.3 ◦C lower than
the mean measured temperature. We improve comfort from
20 to 36 persons (80%).

4. CONCLUSION
We presented a model for smart-appliance interaction that

reduces the need for metadata and uses a logical human-
appliance relation for identification. We have shown a first
implementation of such a model using smart lighting and
heating. Looking forward, a central building management
might be partly substituted by such a decentralized model
that combines local user preferences with global energy goals.
Humans will be increasingly equipped with wearable sensors
that enable an identification of logical relations in all rele-
vant comfort dimensions. This also opens up a move from
RF localization techniques to ambient techniques.
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