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Abstract—Edge computing enables new, low-latency services
close to data producers and consumers. However, edge service
management is challenged by high hardware heterogeneity and
missing elasticity capabilities. To address these challenges, this
paper introduces the concept of elastic services. Elastic services
are situation aware and can adapt themselves to the current
execution environment dynamically to adhere to their Service
Level Objectives (SLOs). This adaptation is achieved through
Diversifiable Programming (DivProg), a new programming model
which uses function annotations as interface between the service
logic, its SLOs, and the execution framework. DivProg enables
developers to characterize their services in a way that allows a
third-party execution framework to run them with the flow and
the parametrization that conforms to changing SL.Os. We develop
a prototype and perform an experimental evaluation which
shows that elastic services can seamlessly adapt to heterogeneous
platforms and scale with a wide range of input sizes, while
adhering to their SLOs with little programming effort.

Index Terms—IoT, services, adaptive, programming model

I. INTRODUCTION

The proliferation of tightly coupled data producers and
consumers at the endpoints of the Internet challenges tradi-
tional cloud-centered data processing and service placement.
The reasons are tight responsiveness requirements (e.g., for
applications involving user interaction like augmented reality
(AR) [1] or smart appliances [2]), strict data privacy require-
ments (e.g., for camera surveillance data) and the depletion
of existing network uplink resources for such massive reverse
data flow [3].

A solution to these problems is to move services closer
to producers and consumers as proposed in Edge and Fog
computing [4], [5]. Previous work [6], [7] shows that this can
greatly improve responsiveness, bandwidth use and power con-
sumption of existing services. However, deploying services at
the edge creates different challenges as opposed to deploying
them in a cloud-scale data center:

Hardware Heterogeneity. Edge IoT services might run on
low power, Raspberry Pi form factor devices, traditional x86—
64 machines, high-performance edge servers, equipped with
powerful GPUs, or highly optimized application-specific inte-
grated circuits (e.g., Google’s tensor flow processing unit [8]).
The result is that a service has widely different performance
characteristics depending on where it is deployed.

Elasticity. The cloud provides elasticity mechanisms, which
the edge cannot provide [9]. Services in the cloud scale
horizontally over multiple machines or vertically by increasing
their RAM and CPU share. The edge might consist of a single
machine with limited hardware capabilities for vertical scaling.
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Edge load is highly dynamic (e.g., determined by the number
of close-by AR users).

Different approaches address these challenges. Saurez et
al. [10] present a container based distributed execution frame-
work for edge-cloud applications, that uses Quality of Service
(QoS) driven task placements. Likewise, Villari et al. [11]
envision the concept of osmotic computing, where micro
services are deployed opportunistically in both cloud and edge
based on QoS requirements and current execution context.
The assumption in these works is that the cloud is an always
available resource to which tasks can migrate dynamically.

This is not true for many IoT scenarios, where task mi-
gration might be (temporarily) restricted due to service re-
sponsiveness requirements (e.g., AR response time should be
< 100 ms [12]), bandwidth limitations and fluctuations (e.g.,
in wireless settings), expensive, due to power consumption (ra-
dio communication can govern power consumption in wireless
networks [13]), or ruled out due to privacy requirements (e.g.,
sensitive camera data). This paper deals with managing such
IoT service deployments, where service migration to the cloud
is not an option for some, or several of these reasons.

Our key insight is that we need to bring elasticity properties
to the edge itself. Due to limited hardware capabilities, it is
not possible to apply existing cloud elasticity mechanisms, like
horizontal and vertical scaling to edge hosted services. Thus,
our approach is to make the service itself elastic by introducing
the concept of elastic services. Elastic services are situation
aware and can adapt themselves to the current execution
environment dynamically, jointly with the execution platform
to stay inside their Service Level Objectives (SLOs). We
enable these elastic services through two main contributions:

1) Diversifiable Programming (DivProg), a new program-
ming model, which uses function annotations as interface
between the service logic, its SLOs, and the execution
framework. DivProg enables developers to characterize
their services in a way that allows a third-party exe-
cution framework to execute them with the flow and
parametrization that conforms to changing SLOs.

2) Finally, we develop a prototype and perform an ex-
perimental evaluation which shows that elastic services
can execute on heterogeneous platforms while adher-
ing to their SLOs without much programming effort.
Compared to a non-elastic service implementation, we
improve latency three-fold (0.89s vs. 3.3s), adapting to
the hardware platform, and increase input elasticity by a
factor of 16.



II. GAP ANALYSIS OF CURRENT SERVICE DESIGN

To motivate elastic services for edge computing, we in-
troduce a camera based IoT service as application scenario.
Modern cities contain a wide range of connected cameras.
Their camera data can be the input for a variety of smart city
applications. For example, they can be used to count people
and understand crowd mobility [14], but can also be used to
locate specific persons like a lost or abducted child [15]. We
consider this “lost child use case” as application scenario for
our paper: (1) a camera captures images, (2) a face detection
classifier detects faces in the image and (3) a trained face
recognition classifier matches found faces against the missing
child. When we find a match, we send a notification with the
child’s location to nearby law enforcement.

When a child goes missing, the service is deployed using
existing connected cameras and edge servers in the city. A
small end-to-end latency is crucial to ensure a high frame
sampling rate, so that we are unlikely to miss the child even
if it only appears briefly on the video feed, e.g., when the
child is moving: the Service Level Objective (SLO) is 1s
end-to-end latency, while maximizing the achievable accuracy.
However, existing cameras are connected differently to upper
layers (wireless, Ethernet) and have heterogeneous hardware
capabilities [16], while some camera owners might enforce
policies that disallow that the service is executed in the cloud
due to privacy requirements. This introduces problems for the
service to adhere to SLOs as we show now.

A. Limitations of Non-Elastic Services

We implement and deploy the lost-child service on several
platforms, representing a range of potential camera and edge
hardware: (1) a Raspberry Pi 1B (ARM Cortex-A7), (2)
Raspberry Pi 3 (ARM Cortex-A53), (3) an x86-64 based server
(Intel 17-4790) and (4) a typical public cloud VM on Google
Cloud Platform (GCP) with 8 cores.

We then measure the dominant computation time for a
single image frame using two established face detection
and face recognition classifiers (Haar feature-based cascade
classifiers [17] and Local Binary Patterns [18] respectively).
Figure 1 depicts the cumulative distribution function (CDF)
of the per frame execution time for our platforms. Both, the
dedicated server (0.04s) and the virtual machine (0.06s) are
well below the 1s requirement. However, the execution times
of the Raspberry PIs are larger by order of magnitude (RPi3:
0.6 s, or even exceed itself alone the SLO (RPil: 3.35s).

To understand the holistic service compliance to SLOs, we
then measure the overhead of network latency (image upload
round trip time) for different cloud geo-regions and for a
local edge-server (WiFi, single hop) as depicted in Figure 2.
Our results show that cloud computing adds notable latency
overheads that themselves can already exceed overall service
latency goals (e.g., for us and asia zones) or add substantial
overhead when running in the same zone (europe: 0.5s).

The combined results show that neither cloud nor edge can
adhere to the required 1 s end-to-end latency in every execution
scenario. Cloud computing is able to provide short execution
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Fig. 1. Overall computation time for 640 x 460 PNG on different hardware:
a Raspberry Pi 1B, a Raspberry Pi 3, a Google Cloud Platform VM and a
server CPU (Intel 17-4790) with a GPU (GeForce GTX 950).
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Fig. 2. 640 x 480 PNG upload round trip time to different geo-zones of
Google Cloud Platform (europe-west3: 80km, europe-west2: 665km, us-east1:
7095km, us-westl: 8400km, asia-northeastl: 9405km) and a local lab server

times, but also high variances in latency dependent on geo-
location of the cloud resource and network-link characteristics.
Edge computing reduces these network latencies, but intro-
duces high variance in execution times due to high hardware
heterogeneity. A possible solution to this problem is that
the service logic adapts to the execution environment, which
introduces additional challenges for current service design.

B. Challenges Towards High Adaptability

IoT execution environments and the required service adapta-
tions are highly complex and hard to capture for either service
developers or operators alone. For example, Table I shows four
possible runtime states that might occur together with possible
adaptations for the lost child service. Even in this simple
service, the possible runtime states and their implications on
SLOs are complex or unknown to service developers (e.g., the
expected number of faces in an image can only be estimated,
is dynamic, deployment dependent, and out of control of
the service logic). This complexity, in turn, leads to services
being implemented with either a low degree of adaptability or
with wrong or inefficient logic for selecting among possible
modes and parameters (e.g., service logic might not adapt
to the number of faces). We now present DivProg, a new
programming model that deals with such problems.

III. DIVERSIFIABLE PROGRAMMING

DivProg is a model that abstracts the selection logic—i.e.,
the logic that determines how the function selection and their



TABLE I

EXAMPLE RUNTIME STATES AND THEIR POSSIBLE IMPLICATIONS

Runtime State

Possible Problem

Possible Adaptation

Host CPU overload
(actual or predicted)

Lost child notification
sent too late.

Use faster classifier to
process image.

Many people in cam-
era view.

Face-recognition  slow,
latency outside SLO.

Degrade parameters of
classifier.

Al accelerator (GPU
or dedicated ASIC)
not available on host.

CPU based computation
too slow to respect la-
tency requirements.

Use “shallow” learn-
ing algorithm instead
of deep learning.

Limited wireless link
bandwidth to street
cameras due to inter-

Video frames arrive de-
layed and cannot be pro-
cessed in time.

Reduce image resolu-
tion, use sub-sampling
to reduce bandwidth

ference. usage further.

System wide controller
e.g., Cloud-edge

Orchestrator

Develops

(pre-deployment) Deploys service

Application Logic

Service | | Service Service
[.-]
@DivProg(impl = {fA:10, fB:7, fC:38}, res= | | | SN——g N rurr
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Fig. 3. System and programming model for developing adaptable applications

parameter values depend on different runtime states—to the
platform, without requiring developers to know details of this
selection logic or any respective APIs of the platform. Figure 3
depicts the overall architecture and works as follows.

First, developers provide function annotations in-line for
their service implementation in cases where the function
choices and their parameter values depend on the current
runtime state (e.g., the network link, the host capabilities). As
an example, a developer can annotate two face detection clas-
sifier functions with their respective utility (e.g., one is more
accurate, but slower). Note that both classifiers implement
the same functionality, namely detecting faces. Annotations
are not limited to function choices, but developers can also
provide a selection of different function parameter values, e.g.,
image sizes. Practically, this means that the actual service flow
and parameter selection can be controlled by the platform
developer, exploiting the in-line function annotations.

The service can now be packaged without explicit code
selection logic and deployed on a host of the PaaS. It has the
ability to interact with a (pluggable and potentially different
for every host) code selection engine module. The host of the
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service and the values of the platform configuration param-
eters and host attributes change at runtime, leading the code
selection logic to take different decisions and lead to different
program flows each time. We now discuss our implementation
of DivProg together with a specific platform code selection
logic that enables elastic services for edge-computing.

IV. IMPLEMENTATION AND EVALUATION

We have implemented a DivProg prototype in Python 3.6
that builds on the asyncio library and uses the decorator design
pattern for function annotations. Decorators provide a dynamic
intersection point to the DivProg execution platform and allow
us to execute the platform code selection logic. Listing 1 shows
an example of our prototype. This function resizes an image,
while abstracting the size selection to the platform. Each size
is assigned a utility value between 1 and 10 towards the overall
application goal (i.e., greater image sizes will provide better
accuracy). This allows the platform to seamlessly reduce the
image size to adhere to SLOs, like latency, when necessary.

from divprog import adapt
@adapt (size = {640: 10, 480: 9, 320:
def resize_image(img, img_id, size =
import imutils
return (imutils.resize(
img, width=min(size,
img_id)

6, 240:
640) :

31

img.shape[l])),

Listing 1. Programming Model. Developers can annotate functions with hints
for the platform on what parameters to adapt. In this example, the image size
is adapted by the execution platform dynamically according to SLOs.

A. Code Selection Engine

In our prototype, we use a heuristic code selection engine
that enables elastic [oT services through dynamic adaptation.
Algorithm 1 depicts its working. The Decorator function is
called whenever the actual service function is called. We then
compare Service Level Indicators (SLIs) against SLOs and act
accordingly by choosing different parameter values or function
implementation. We obtain SLIs by profiling execution time
on a function level. Dependent on the chosen velocity, we
try to improve service quality in regular intervals by choosing
parameter values or implementations with a higher utility (e.g.,
larger image sizes, more accurate classifiers).

Algorithm 1 Simplified Code Selection Logic

oldParams = {...}
windowSize = 20
i=0
function DECORATOR(oldParams)
if MMEAN(ObservedCosts, windowSize) > Constraint then
params = DEGRADE(oldParams); i = 0
else
if ¢ >windowSize then
params = UPGRADE(oldParams); i = 0
else
params = oldParams; i++
end if
end if
end function

> previous function parameters
> tunable velocity parameter to fit application




B. Evaluation

Using our prototype, we evaluate the analyzed challenges of
managing IoT edge services: (1) hardware heterogeneity, and
(2) missing elasticity mechanisms. Specifically, we implement
the lost-child service and generate random compositions of
face images from the published dataset in [19] as input data.
Each composition contains a number of N faces.

Hardware Heterogeneity. We deploy the lost-child service
on two low power edge platforms: the RPil1B and the newer
RPi3B. We use 200 generated 1-6 faces compositions as input.
Figure 4 shows the results of our elastic services on both
devices together with a baseline implementation that uses
a non-elastic service design. On the RPi3B, the non-elastic
implementation works well (mean latency 0.3 s). However, the
RPi1B with its less powerful hardware violates the 1 s latency
requirement (3.3 s). The variance in the depicted results is due
to the varied number of faces in each image (1-6). Looking at
the elastic service results, both devices perform as desired: the
RPilB now conforms to the latency requirement by adapting;
the newer RPi3B shows the same performance as before,
because no adaption is required to meet SLOs. Note that the
measured overhead of our framework and the implemented
code selection logic is 4 ms (based on 1000 repetitions).
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Fig. 4. Elastic Services adapt to hardware platforms according to SLOs.

Elasticity. To explore the elasticity of our service, we then
deploy the same service on the RPi3, but increase the load
by evaluating an increasing number of people, thereby testing
elasticity. Specifically, we generate image compositions with
6, 12, 24, 48, 96 and 192 faces in them (1100 images overall).
We then gradually input images from 6 to 192 faces and back
to 6 faces into our service to simulate a dynamic crowd (e.g.,
during a public event). Figure 5 depicts this experiment. The
elastic service is able to keep the latency inside SLOs (mean
latency 0.53s), while the non-elastic service violates SLOs
with the growing number of people (e.g., 5.28 s for 192 faces).
Elastic services use adaptation mechanisms to let the platform
fit the service to the execution context. We use different
classifiers for face recognition and detection as adaptation
methods. Table II shows the accuracy-latency trade-offs for
each method (non-elastic) and for the elastic service overall
for 6-192 faces. The elastic service achieves better accuracy
results than a low quality static implementation and only
slightly worse results than the best quality implementation,
while conforming to latency SLOs.
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Fig. 5. Elastic Service Adapts to Number of People. We artificially increase
the number of people in images (6, 12, 24, 48, 96 and 192). The elastic
service adapts by selecting different classifiers to reach latency goals. The
static service cannot scale with a growing number of people.

TABLE 11
ACCURACY AND LATENCY FOR ELASTIC AND NON-ELASTIC SERVICES

Face Detection  Child Recognition 95th
Accur Precision Recall ~ Lereentile
ccuracy ecisio eca Time (s
High  0.993 0.990 0.541 5.84
Non-Elastic Medium 0.976 0.874 0412 1.81
Low  0.932 0.841 0.378 0.71
Elastic 0.963 0.854 0.412 0.91

V. RELATED WORK

In the mobile community, several works facilitate context
aware applications through better abstractions: Senergy [20]
supports programmers in automating common latency, power,
accuracy trade- offs. ENT [21] provides a type-based proactive
and adaptive mode-based energy management at the appli-
cation level, where developers characterize energy behavior
of different program fragments with modes. We take some
inspiration in these ideas but focus this work on (1) exporting
service code selection logic to the execution platform and (2)
on the application of this model for edge computing.

Stream processing systems have recently proposed princi-
ples of adaptive streaming (e.g., through data transformation
techniques and dynamic degradation) [22]-[25]. We have
also applied adaptation strategies for our edge computing
prototype. However, we provide a more general programming
model that allows platform dependent code selection logic.

VI. CONCLUSION AND FUTURE WORK

We have presented the concept of elastic services that
bring elasticity principles to edge computing through service
adaptation. Our implementation focused on an elastic image
processing service bound by latency SLOs. Compared to a
non-elastic service implementation, we improve latency three-
fold (0.89s vs. 3.3s), adapting to the hardware platform, and
increase scalability by a factor of 16 (192 vs. 12 people
in image). Our programming model is general enough to
support many different SLOs and code selection logic. We
are currently exploring privacy and cost objectives and their
implications on code selection logic design and a formal
definition of our annotation syntax.
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