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Outline

» Motivation and relation to climate change

» Dearth of good quality datasets for mobility

» MobilityNet: privacy preserving, cross platform, ground truthed
¢ 1080 hours of multimodal, diverse data
¢ 16 sets of travel contexts (e-scooter, bike, walk, etc)



Motivation



Transportation emissions
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Travel behavior is critical

Greenhouse Gas (GHG) reduction strategies:

» Behavior: Avoiding journeys (land-use, tech)

» Behavior: Modal shift

» Engineering: Lowering energy intensity (fuel
efficiency)

» Engineering: Reducing fuel intensity
(alternative fuels)

New Delhi, near the Yamuna river, in Mar 2018 and Apr 2020,
In India, life under coronavirus brings blue skies and clean air, Washington Post



https://www.washingtonpost.com/world/asia_pacific/india-coronavirus-delhi-clean-air-pollution/2020/04/10/ac23dd1e-783e-11ea-a311-adb1344719a9_story.html
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Limitations of existing datasets



The study of London commuters found that
respondents viewed their daily trip in terms of

the time and distance between charging
u points for mobile technology.

"People no longer think about their destination

. being 10 k 10 st the tube.
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battery away," said the study's lead author, Dr.
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Battery icons shape perceptions of time and space and define user identities. City University London. ———




Privacy

» Location data is inherently privacy sensitive
¢ Redacting user name and email is not enough
¢ Fuzzing ends is not enough
¢ Home + work combination at cell tower granularity
¢ unique for more than 50% of users*
» Very little public data
¢ Opportunity Activity Recognition Challenge (no GPS)
¢ US-Transportation Mode Dataset (no GPS)
¢ Multiple mode inference papers (no dataset
published)

* Montjoye, Yves-Alexandre de, César A. Hidalgo, Michel Verleysen, and Vincent D. Blondel. 2013. “Unique in the
Crowd: The Privacy Bounds of Human Mobility.” Scientific Reports 3 (March).
https://doi.org/10.1038/srep01376.
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' How did you get here?

Ground truth

Bike
» Primary focus on travel mode

» Prompted recall (PR): show list of trips for
labeling
¢ But mode depends on correct
segmentation!
o PR unreliable as ground truth*
¢ Certainly wrong 9%
¢ Probably wrong additional 10%
» No spatio-temporal ground truth

Drove Alone

Shared Ride
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* Peter R. Stopher, Li Shen, Wen Liu, and Asif Ahmed. The Challenge of Obtaining Ground
Truth for GPS Processing. Transportation Research Procedia, 11:206-217, 2015. ISSN
23521465. doi: 10.1016/j.trpro.2015.12.018




MobilityNet



Concepts
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» Artificial trips

o Uses: Pre-defined spec with trajectories and modes
¢ Solves: Privacy and spatial ground truth

» Control phones

¢ Uses: Multiple phones with auto-configured app
¢ accuracy and power controls
¢ Solves: Power/accuracy tradeoff, temporal ground truth N

» Repeated travel

¢ Uses: Pre-defined spec with travel time and dwell time seofence radius: 100
¢ Solves: Context sensitive variation from sensing APIs

Select regimes to compare A

fixed:ACCURACY_CONTROL

is_duty_cycling: false

accuracy_threshold: 200

simulate_user_interaction: false
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Data characteristics

» Trip characteristics

¢ ~3x dwell time vs mean travel time
¢ Travel between public locations to preserve privacy

» Transfer Between Modes

¢ Detecting mode transfer is hard
¢ MobilityNet contains many different mode transitions

» Large and multimodal

o Qver 1080 hours across 16 different travel contexts!
o Similar modes done in different contexts
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Data sources

Primarily from Virtual Sensors
¢ Closed source APIs provided by phone OS
Fused Location
¢ GPS/WiFi/Cellular (ts, lat lon, accuracy, speed)
Motion Activity
¢ Accelerometer/gyroscope/barometer (ts, confidence, type)
Trip Transition Events
¢ Virtual and custom platform duty cycling events (exit geofence,
stop moving, tracking stop)
Battery



Mobility Diary

» Sensed data — Mobility Diary
¢ Raw data -> trip/section trajectories w/ transport modes
» Construction
¢ Trip Segmentation
¢ Data will have gaps
¢ Section Segmentation
¢ Travel by one mode
¢ Trajectory Filtering
¢ Erroneous data can be common
¢ Mode Inference
¢ Hard to distinguish some modes from others
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Metrics

Trip and section segmentation [\
o Difference in count
o Difference in start and end timestamps

Trajectory outlier detection NN
o Spatial: A (point, ground truth trajectory) NAFA S
¢ Spatio-temporal: A (point, reference NN e

trajectory) NN

Mode classification X
¢ Segmentation dependency <> % matching /
¢ Force segmentation < F1 score?

Battery drain




Baseline results nmrr—a=

1 Jground truth
10 inferred

metric goal

battery drain (%) low
trajectory error (m) low

A trip count low
A section count low
A trip start (min) low
A trip end (min) low
A section start (min) low
A section end (min)  low
Mode match ratio high
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Conclusion

Accurate travel behavior
¢ Critical for long-term mitigation of transportation GHG

Lack of public datasets

MobilityNet: 1040 hours of cross-platform data
: /

Call to action

¢ Classic challenges on the public dataset
¢ Data collection from other locations for a larger public dataset
¢ Hybrid challenges, run winning algorithms on large private data


http://mobility-net.org/
https://github.com/MobilityNet/

