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ABSTRACT
This paper explores the potential of machine learning (ML)
systems which use data from in-vehicle sensors as well as
external IoT data sources to enhance autonomous driving
for efficiency and safety in urban environments. We propose
a system which combines sensor data from autonomous
vehicles and IoT data collected from pedestrians’ mobile de-
vices. Our approach includes two methods for vulnerable
road user (VRU) detection and pedestrian movement inten-
tion prediction, and a model to combine the two outputs
for potentially improving the autonomous decision-making.
The first method creates a world model (WM) and accurately
localizes VRUs using in-vehicle cameras and external mobile
device data. The second method is a deep learning model to
predict pedestrian’s next movement steps using real-time
trajectory and training with historical mobile device data. To
test the system, we conduct three pilot tests at a university
campus with a custom-built autonomous car and mobile de-
vices carried by pedestrians. The results from our controlled
experiments show that VRU detection can more accurately
distinguish locations of pedestrians using IoT data. Further-
more, up to five future steps of pedestrians can be predicted
within 2 m.
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1 INTRODUCTION
There have been major advancements in ML research due
to the increased availability of computation capabilities as
well as open datasets (e.g., popularly used labeled image
datasets) which allow researchers to easily benchmark their
approaches against the state of the art. Furthermore, the
development of ML frameworks such as TensorFlow enable
easy prototyping and experimenting with new ML systems.
Simultaneously, in recent years, the Internet of Things (IoT)
has been expanding to many domains such as smart cities
and mobility. Access to resources such as IoT platforms (e.g.,
Microsoft Azure, AWS IoT) and large-scale experimental
IoT testbeds [9] enables researchers in the field to conduct
experiments.

The main motivation of this paper is to learn from IoT to
improve the safety of future self-driving vehicles. Although
today’s autonomous cars have many sensors and also give
control to the driver for improving safety, incidents such
as the Uber accident (2018) show that both car sensors and
drivers can easily fail to detect the pedestrians. IoT extends
the connectivity in a way that many devices are connected.
In addition, the devices become cheaper and more efficient.
Through vehicle-to-vehicle (V2V) or vehicle-to-everything
(V2X) communications in the 5G era and edge computing,
road infrastructures in urban areas can provide support for
traffic safety.

This paper aims to combine IoT and ML for enhancing au-
tonomous driving safety. The proposed system learns from
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data collected from in-vehicle sensors (e.g., cameras) and
external IoT sources such as mobile devices of VRUs. The
components included in the setup are the following: 1) au-
tonomous car, 2) mobile devices with the mobility app, 3)
in-vehicle IoT platform, 4) VRU detection and intention pre-
diction components, and 5) cloud IoT platform. ML leverages
data sources for training such as data collected by the vehicle
at the Eindhoven University of Technology (TU/e) campus,
our smartphone app for movement tracking, and mobile ITS-
G5 location devices. We propose two methods for accurate
VRU detection and pedestrian intention prediction. The first
method is creating a WM by combining the vehicle and mo-
bile device data and performs VRU detection and localization.
The second method uses the latest trajectory data (coming
from the vehicle’s camera or mobile device) and predicts
the pedestrians’ intended movement steps based on pedes-
trian behaviors from historical measurements using a deep
learning model. We also discuss a Petri Net model showing
under which conditions which inputs can be combined for
the autonomous decision-making.

To validate the proposed methods, we conduct three pilot
tests at the TU/e campus using our custom-built autonomous
car and the mobile devices (with the app) carried by pedes-
trians. The results from our controlled experiments show
that the proposed approach produces promising results with
minimum errors in VRU localization and prediction of future
movements without much latency. We believe the proposed
system can complement the existing autonomous driving
systems to provide an additional layer of safety.

2 RELATEDWORK
Methods and technologies used for the VRU detection have
different performance and constraints. Most of the previ-
ous works leverage computer vision to detect road users,
whereas the recent works also propose predicting VRU in-
tentions [10]. However, the computer vision approaches have
problems such as occlusion and false positives. For instance,
a pedestrian can be easily occluded by an obstacle or even
by another person, decreasing the solution accuracy [7].

Goldhammer et al. [3] present movement models based on
ML methods to classify the motion state and to predict the
future trajectory of VRUs. Realistic data is captured by the
vehicle’s laser scanners and high-resolution cameras. Results
show an accuracy of 88.6% for the motion state classification
and a reduction of the trajectory prediction error by 41%
on stopping motion scenarios. Bastani et al. [1] present a
warning system using smartphones to protect VRUs. The sys-
tem is activated by a geometric model and a fuzzy inference
engine estimates the collision risk. In real-world evaluation
samples, results show a 96% accuracy in six types of acci-
dents. This system does not consider the pedestrian intention
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Figure 1: A perspective for improving autonomous
driving decisions using IoT data sources. The pro-
posed approach (the black box) combines enhanced
VRU detection and pedestrian intention prediction.

and behavior or intersection scenarios. Lastly, Murphey et
al. [8] propose three methods to predict pedestrian positions.
In this work, dead reckoning and neural networks models
are evaluated on the trip data recorded from two pedestrians
using smartphones. Results show an error between 0.57m
and 3.22m for the best-case scenario. This study uses only
smartphone data for the location of pedestrians, whereas our
approach combines accurate detection from the autonomous
vehicle sensors with real-time and offline mobile device data
for pedestrian intention prediction.

3 APPROACH
The goal of the proposed approach is to combine accurate
VRU detection and pedestrian intention prediction with the
enhancement of learning from IoT data sources. A simplistic
view of this idea is given in Fig. 1. Possible data sources and
actors are listed on the left side, given as inputs. These inputs
are combined for autonomous driving actions of the car on
the left side. The remainder of this section includes the fol-
lowing: 1) VRU detection, 2) pedestrian intention prediction,
3) how to combine the two methods to support autonomous
decisions.
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Figure 2: An example pedestrian trajectory and the de-
fined variables.

3.1 VRU Detection
The VRU detection is based on the WM which contains the
vehicle itself and the objects in its surrounding. The formal-
ism adopted in this research is WIRE1 where the WM aims
to track semantic objects such as pedestrians and bicycles.
To estimate features and track objects depending on the ob-
jects that are involved, an autonomous car should overcome
various challenges. Incorporation of the Multiple Hypoth-
esis Tracker (MHT) in an anchoring strategy is a solution
applied in the WM. Applying this algorithm, it is possible to
combine different forms of evidence into a common and up-
dated world representation dynamically. Objects’ attributes,
classification, and prior knowledge are associated in the hy-
potheses tree. Every hypothesis contains a list of anchors
and has a correctness probability. Each anchor on its turn
contains an individual symbol, a set of measurements and
a probabilistic signature that consists out of a mixture of
probability density functions (PDFs) generated by a set of
behavior models. The predicate attribute space represents
predicate grounding relations that link attribute values and
predicate symbols [2].

3.2 Pedestrian Intention Prediction
This method predicts the next location of pedestrians based
on historical data and the current position. The applied ML
model uses the mobile device data such as speed and GPS
trajectory values of pedestrians to predict their next move-
ments. The representation of pedestrian trajectory used on
this work is inspired by the model in [8]. Fig. 2 shows the
path modeling with an example pedestrian trajectory that
appeared during the experiments at the campus.

The deep learning model consists of three input features,
three concatenation layers, and nf output features, where nf
is the number of future locations for every (x ,y) coordinate.

1http://wiki.ros.org/wire
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Figure 3: The deep learning model for pedestrian in-
tention prediction.

The Adam algorithm [5] is applied for the optimization pro-
cess with ReLU activation function. Fig. 3 shows the network
model. The input layer consists of time-series values from
the previous np positions (included in the latest np smart-
phone data) and their respective speed. Two input neurons
represent x ,y coordinates and one neuron contains the speed
values. An embed encoder is applied to map the inputs into
vectors and then forward to the concatenation layers. These
intermediary layers concatenate all outputs of the feature en-
coders and pass the concatenation through fully connected
layers. We have cross-validated the model with one, two and
three concatenation layers. The model with three layers is
selected as it has a better overall performance. In the out-
put layer, each neuron represents the future location of the
pedestrian, starting from the first next position t(c + 1) until
t(c + nf ), where t represents the trajectory sequence and c
is the current location.

To feed themodel with past and future positions, we define
np = 10 and nf = 5, which are approximately equivalent to
11m and 5.5m in a straight-walking distance, respectively.
The data used to train and optimize the model is randomly
partitioned into training (70%), validation (20%), and testing
(10%) subsets.

3.3 Combining VRU Detection and
Intention Prediction

We propose combining the inputs from the two previous
parts to support the autonomous decision-making. Here,
we use a simple model based on stochastic priority Petri
Nets [6]. Fig. 4 shows the model with the places (big cir-
cles), transitions (rectangles), and tokens at the initial stage.
λ denotes the probabilistic variables based on the transition
step, whereas the curly-braced numbers indicate the priority
labels and numbers w/o curly braces denote the number of
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Figure 4: The Petri Net model showing the cases when
the proposed methods are applicable to support au-
tonomous decision-making.

tokens. The model considers two types of VRUs: 1) users of
mobile devices and our app (w/ IoT data) and 2) people w/o
the app. Three possible cases exist when a person is in the
vicinity: 1) both the mobile device and vehicle sensor data,
2) only mobile device data, 3) only vehicle sensor (camera)
data is available in the in-vehicle platform. For cases 1 and
3, the WM creates a list of VRUs and classifies them (i.e.,
pedestrian/cyclist). For case 1, the detected pedestrians are
matched with the the mobile device w/ available data. The
outputs of the pretrained intention-prediction model is used
for assessing the safety (bottom-left). For case 2, the distance
is calculated and given to safety assessment using the vehi-
cle and person location data. For case 1, a state-of-the-art
approach [4] can be used to predict the transport mode to
filter out passengers and cyclists. In the case of pedestrian
existence, the pretrained model for pedestrian intentions pro-
vides additional input for the safety assessment state. Other
than the shown inputs, other IoT data from the vehicle, en-
vironment, or people can be leveraged by the autonomous

(a) A controlled experiment run: The walking-straight sce-
nario.

(b) Animation of the above exper-
iment run.

Figure 5: Visualizing the experiments through anima-
tions. Pedestrian: the short trajectory (from left to
right), car: the long trajectory (from bottom to top).

decision-making for a set of final actions (bottom-right). For
simplicity, we include three probabilistic actions: 1) keeping
same pace, 2) slowing down, and 3) brake, whereas more
complex maneuvers can be considered.

4 EVALUATION
4.1 Pilot Setup
We conduct the pilot tests mainly at the TU/e campus. The
campus has a 2 km road network and tests are executed
with a speed limit of 15 km/h. The custom-built autonomous
car prototype (Toyota Prius) is used. The car has a custom
mobile ITS-G5 device connected to the in-vehicle IoT plat-
form. Two pedestrians also carry these ITS-G5 devices. The
IoT Gateway in the in-vehicle platform is connected to two
cloud IoT platforms via MQTT and HTTP using the cellular
4G connection. The Robot Operating System (ROS) collects
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Figure 7: Message delays from smartphone to vehicle
ROS during the initial pilot tests.

data from the vehicle and pedestrians (via direct communi-
cation with ITS-G5 or indirectly from cloud platforms). It
operates on the in-vehicle IoT platform. So far, we conducted
prototype integration tests and 3 pilot tests (each 1-2 weeks
long).

We store the pilot tests data in rosbag and CSV files. Each
in-vehicle or cloud component publishes data to ROS in real-
time (via an IoT Gateway). The controlled experiments data is
analyzed for the performance of the methods. We conducted
21 controlled experiments (consists of a total of 70 runs)
where the pedestrian movements are predefined, whereas
the autonomous-driving behaviors are mostly uncontrolled
and the driving is affected by the vehicle sensors or other
factors. The controlled experiments include autonomous
and manual driving modes. We visualize the experiments by
various animation tools. Fig. 5 shows one of the controlled
experiment runs and a view from the visualization of the
trajectories through discrete-time animation.

4.2 Experimental Results
VRU detection results: As a proof of concept of the VRU
detection for autonomous cars, the method is applied on the
data streams from the vehicle sensors and IoT data. Table 1
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Figure 9: RMSE of the pedestrian intention prediction
model for each walking scenario.

lists the input data employed in the WM. A constant velocity
Kalman filter and a uniform distribution of objects move-
ment are used as the initial conditions. In the experiments,
we associate the camera data with the IoT data. This is the
same as it is being done in anchoring algorithms and using
prior knowledge to prediction. Fig. 6 includes results from
an experiment with two pedestrians, one with ITS-G5 and
smartphone devices and one w/o devices. The mobile devices
representing the pedestrian send the IoT data to the vehi-
cle. As it has shown in this figure, the VRU detection has a
better prediction for pedestrian 1 with the IoT data, since
the vehicle receives the global location of a pedestrian a few
seconds before the camera detection. After a few seconds,
the IoT error becomes significantly large compared to the
more accurate camera detection.
While ITS-G5 device has message latency measured in

msec, using smartphones (with 4G) has longer delays as the
data comes through the cloud IoT platform. Fig. 7 shows the
latency of smartphone location data arrival to in-vehicle IoT
platform, more specifically to the ROS component. Most of
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Devices Type Input for the WM Frequency Error (m)
Camera Vehicle

sensor
Number of objects, relative distance from each object to the car
(extracted from the image frame)

8 frame/sec <2

Smartphone IoT ID, latitude, longitude 1 frame/sec <3
ITS-G5 device IoT ID, latitude and longitude of the mobile device 1 frame/sec <3

Table 1: The world model inputs.

the smartphone location data arrive in less than 1 sec with
an average of ~0.6 sec.
Intention prediction results: The deep learning model
proposed in Section 3.2 is trained with data from all 70 runs.
We use Ludwig2 and TensorFlow™ to train and validate the
model. After the training, three new sets of experiments in
distinct scenarios are run to evaluate the method. In the first
scenario, a pedestrian crosses a street walking straight. In
the second and third, instead of crossing, a pedestrian leaves
a building and then turns right or left on the sidewalk. Each
scenario is run 6 times. Fig. 5 shows a photo and GPS traces
collected during a run of the “walking-straight" scenario.

The trained model predicts the next five possible steps of
the pedestrian. Each data created by the app represents a
step. The time between two consecutive data is in the range
of [0.5, 1] sec. The position error is given by the Haversine
distance between the predicted and actual locations. Fig. 8
shows the error distance for all experiments. The lowest
error for the first predicted step is 0.1m whereas most of the
predictions result in less than 1m errors. Moreover, the latest
(fifth-step) prediction on the path sequence has an average
error of 1.9m.
Fig. 9 shows the root mean square error (RMSE) results

which are calculated as

RMSE =

√∑k
t=1 (x̂t − xt )

2 + (ŷt − yt )
2

k
, (1)

where x̂t ,ŷt and xt ,yt represent the predicted and actual
locations, and k is the number of runs in the experiment.
The walking-straight scenario has the best accuracy with a
max error of 1.9m in the furthest prediction step, while the
turn-right movement has the lowest accuracy with errors
between 1.2m and 3m. These results show that the straight-
walk intention has a better correlation with the previous
steps. In comparison to the existing MLP network model [8],
our model performs 0.2m better on average, considering that
our longest prediction step is equivalent to the longest time
measured on that work. Moreover, the results also show a
decrease of 18% and 48% in the error compared to the NARX
and Dead Reckoning approaches, respectively.

2http://uber.github.io/ludwig/

5 CONCLUSION AND FUTUREWORK
This paper proposes learning from IoT data for the key pedes-
trian detection and intention prediction problems to improve
the safety of autonomous driving. The proposed system
achieves promising performance in the experiments. We be-
lieve the VRU detection and pedestrian intention prediction
can complement the existing safety systems. Our future work
includes extracting features from other IoT data sources such
as OpenStreetMap and students’ lecture schedules which
may further increase the prediction accuracy.
Acknowledgment: This work has been partially funded by
the EU Horizon 2020 Programme under Grant Agreements
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